LIPOPROTEIN PHYSIOLOGY

  • Author Footnotes
    * Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
    Henry N. Ginsberg
    Footnotes
    * Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
    Search for articles by this author
  • Author Footnotes
    * Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
      The major neutral lipids transported through the blood stream, triglycerides and cholesteryl esters, are insoluble in aqueous solutions and therefore must be protected from plasma by a coating of amphipathic (both hydrophobic and hydrophilic) molecules. Lipoproteins are macromolecular complexes carrying various lipids and proteins in plasma that provide such protection to triglycerides and cholesteryl esters. The hydrophobic triglyceride and cholesteryl ester molecules comprise the core of the lipoproteins and are enveloped by an amphipathic monolayer of phospholipids, free cholesterol, and proteins. The proteins, called apoproteins (or apolipoproteins), are critical regulators of lipid transport. Although the lipoproteins comprise a continuum of particles differing gradually in density and in lipid and apoprotein composition, there are accumulations of relatively distinct subclasses that can be isolated by various physical methods. Thus, several major classes of lipoproteins have been defined by their physical-chemical characteristics
      • Gotto Jr, A.M.
      • Pownall H.J.
      • Havel R.J.
      Introduction to the plasma lipoproteins.
      : chylomicrons, very-low-density lipoprotein (VLDL) intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). The physical-chemical characteristics of the major lipoprotein classes are presented in Table 1.
      Table 1PHYSICAL-CHEMICAL CHARACTERISTICS OF THE MAJOR LIPOPROTEIN CLASSES
      Lipoprotein
      • Density
      • (g/dL)
      • Molecular Weight
      • (daltons)
      • Diameter
      • (nm)
      Lipid
      Percent composition of lipids; apolipoproteins make up the rest.
      (% )
      TG CHOL PL
      Chylomicrons 0.95 400×10
      • Boerwinkle E.
      • Menzel H.J.
      • Kraft H.G.
      • et al.
      Genetics of the quantitative Lp(a) lipoprotein trait. III. Contribution of Lp(a) glycoprotein phenotypes to normal lipid variation.
      75–1200 80–95 2–7 3–9
      VLDL 0.95–1.006 10–80×106 30–80 55–80 5–15 10–20
      IDL 1.006–1.019 5–10×106 25–35 20–50 20–40 15–25
      LDL 1.019–1.063 2.3×106 18–25 5–15 40–50 20–25
      HDL 1.063–1.21 1.7–3.6×105 5–12 5–10 15–25 20–30
      TG = triglycerides; CHOL = cholesterol; PL = phospholipids; VLDL = very-low-density lipoprotein; IDL = intermediate-density lipoprotein; LDL = low-density lipoprotein; HDL = high-density lipoprotein.
      * Percent composition of lipids; apolipoproteins make up the rest.
      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Endocrinology and Metabolism Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aalto-Setala K.
        • Fisher E.A.
        • Chen X.
        • et al.
        Mechanism of hypertriglyceridemia in human apolipoprotein (Apo) CIII transgenic Mice.
        J Clin Invest. 1992; 90: 1889-1900
        • Arad Y.
        • Ramakrishnan R.
        • Ginsberg H.N.
        Lovastatin therapy reduces low density lipoprotein apoB levels in subjects with combined hyperlipidemia by reducing the production of apoB-containing lipoproteins: Implications for the pathophysiology of apoB production.
        J Lipid Res. 1990; 31: 567-582
        • Austin M.A.
        • Hokanson J.E.
        Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein (a) as risk factors for coronary heart disease.
        Med Clin North Am. 1994; 78: 99-115
        • Barter P.J.
        • Rye K.A.
        High-density lipoproteins and coronary heart disease.
        J Cardiovasc Risk. 1994; 1: 217-221
        • Bensadoun A.
        • Berryman D.E.
        Genetics and molecular biology of hepatic lipase.
        Curr Opin Lipidol. 1996; 7: 77-81
        • Boerwinkle E.
        • Menzel H.J.
        • Kraft H.G.
        • et al.
        Genetics of the quantitative Lp(a) lipoprotein trait. III. Contribution of Lp(a) glycoprotein phenotypes to normal lipid variation.
        Hum Genet. 1989; 82: 73-78
        • Breckenridge W.C.
        • Little J.A.
        • Steiner G.
        • et al.
        Hypertriglyceridemia associated with deficiency of apolipoprotein C-II.
        N Engl J Med. 1978; 298: 1265-1273
        • Brown M.S.
        • Goldstein J.L.
        How LDL receptors influence cholesterol and atherosclerosis.
        Sci Am. 1984; 251: 58-66
        • Brown M.S.
        • Goldstein J.L.
        The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.
        Cell. 1997; 89: 331-340
        • Bruce C.
        • Tall A.R.
        Cholesteryl ester transfer proteins, reverse cholesterol transport, and atherosclerosis.
        Curr Opin Lipidol. 1995; 6: 306-311
        • Dixon J.L.
        • Ginsberg H.N.
        Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: Information obtained from cultured liver cells.
        J Lipid Res. 1993; 34: 167-179
        • Eisenberg S.
        High density lipoprotein metabolism.
        J Lipid Res. 1984; 25: 1017-1058
        • Fisher E.
        • Zhou M.
        • Mitchell D.M.
        • et al.
        Apoprotein B100, an atypical secretory protein, can be degraded by a cytosolic pathway involving heat shock protein 70 and proteasomes.
        J Biol Chem. 1997; 272: 20427-20434
        • Ginsberg H.N.
        • Le N.
        • Goldberg I.J.
        • et al.
        Apolipoprotein B metabolism in subjects with deficiency of apolipoprotein C-III and A-I: Evidence that apolipoprotein C-III inhibits lipoprotein lipase in vivo.
        J Clin Invest. 1986; 78: 1287-1295
        • Glosmet J.A.
        The plasma lecithin: Cholesterol acyltransferase reaction.
        J Lipid Res. 1968; 9: 155-167
        • Goldberg I.J.
        Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherosclerosis.
        J Lipid Res. 1996; 37: 693-707
        • Gotto Jr, A.M.
        • Pownall H.J.
        • Havel R.J.
        Introduction to the plasma lipoproteins.
        Methods Enzymol. 1986; 128: 3-41
        • Hayden M.R.
        • Liu M.S.
        • Ma Y.
        Gene environment interaction and plasma triglyceride levels: The crucial role of lipoprotein lipase.
        Clin Genet. 1994; 46: 15-18
        • Herz J.
        • Willnow T.E.
        Lipoprotein and receptor interactions in vivo.
        Curr Opin Lipidol. 1995; 6: 97-103
        • Hoeg J.M.
        • Vaisman B.L.
        • Demosky Jr, S.J.
        • et al.
        Lecithin: Cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits.
        J Biol Chem. 1996; 271: 4396-4402
        • Horowitz B.S.
        • Goldberg I.J.
        • Merab J.
        • et al.
        Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol.
        J Clin Invest. 1993; 91: 1743-1752
        • Howard B.V.
        Lipoprotein metabolism in diabetes mellitus.
        J Lipid Res. 1987; 28: 613-628
        • Kissebah A.H.
        • Alfarsi A.
        • Adams P.W.
        Integrated regulation for very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: Normolipidemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia.
        Metabolism. 1981; 20: 856-868
        • Kostner G.M.
        • Knipping G.
        • Groener J.E.
        • et al.
        The role of LCAT and cholesteryl ester transfer proteins for the HDL and LDL structure and metabolism.
        Adv Exp Med Biol. 1987; 210: 79-86
        • Landschulz K.T.
        • Pathak R.K.
        • Rigotti A.
        • et al.
        Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat.
        J Clin Invest. 1996; 98: 984-995
        • Leroy A.
        • Dallongeville J.
        • Fruchart J.C.
        Apolipoprotein A-I-containing lipoproteins and atherosclerosis.
        Curr Opin Lipidol. 1995; 6: 281-285
        • Lewis G.F.
        Fatty acid regulation of very low density lipoprotein (VLDL) production.
        Curr Opin Lipidol. 1998; 9: 171-173
        • Mahley R.W.
        Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology.
        Science. 1988; 240: 622-630
        • Mahley R.W.
        • Rall S.C.
        Type III hyperlipoproteinemia (dysbetalipoproteinemia): The role of apolipoprotein E in normal and abnormal lipoprotein metabolism.
        in: Servier C.R. Bendit A.L. Sly W.S. Valle D. The Metabolic Basis of Inherited Disorders. Vol. 6. McGraw-Hill, New York1989: 1195-1214
        • Packard C.J.
        • Munro A.
        • Lorimer A.R.
        • et al.
        Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects.
        J Clin Invest. 1984; 74: 2178-2192
        • Plump A.S.
        • Smith J.D.
        • Hayek T.
        • et al.
        Severe hypercholesterolemia and atherosclerosis in apolipoprotein E–deficient mice created by homologous recombination in ES cells.
        Cell. 1992; 71: 343-353
        • Reaven G.M.
        Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Shachter N.S.
        • Ebara T.
        • Ramakrishnan R.
        • et al.
        Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein CI.
        J Clin Invest. 1996; 98: 846-855
        • Shachter N.S.
        • Leff T.
        • Smith J.D.
        • et al.
        Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice.
        J Clin Invest. 1994; 93: 1683-1690
        • Tall A.R.
        Plasma high density lipoproteins: Metabolism and relationship to atherogenesis.
        J Clin Invest. 1990; 86: 379-384
        • Talmud P.J.
        • Humphries S.E.
        Apolipoprotein CIII gene variation and dyslipidaemia.
        Curr Opin Lipidol. 1997; 8: 154-158
        • Teng B.
        • Sniderman A.D.
        • Soular A.K.
        • et al.
        Metabolic basis of hyperapobetalipoproteinemia: Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia.
        J Clin Invest. 1986; 77: 663-672
        • Weinstock P.H.
        • Bisgaier C.L.
        • Aalto-Setala K.
        • et al.
        Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice: Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes.
        J Clin Invest. 1995; 96: 2555-2568
        • Wetterau J.R.
        • Aggerbeck L.P.
        • Bouma M.E.
        • et al.
        Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia.
        Science. 1992; 258: 999-1001
        • Yki-Jarvinen H.
        • Taskinen M.
        Interrelationship among insulin's antilipolytic and glucoregulatory effects and plasma triglycerides in nondiabetic and diabetic patients with endogenous hypertriglyceridemia.
        Diabetes. 1988; 37: 1271-1278