Advertisement

Type 2 Diabetes Treatment in the Patient with Obesity

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Endocrinology and Metabolism Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maruthur N.M.
        The growing prevalence of type 2 diabetes: increased incidence or improved survival?.
        Curr Diab Rep. 2013; 13: 786-794
        • Defronzo R.A.
        Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.
        Diabetes. 2009; 58: 773-795
        • Malin S.K.
        • Kashyap S.R.
        • Hammel J.
        • et al.
        Adjusting glucose-stimulated insulin secretion for adipose insulin resistance: an index of β-cell function in obese adults.
        Diabetes Care. 2014; 37: 2940-2946
        • Hurt R.T.
        • Edakkanambeth Varayil J.
        • Mundi M.S.
        • et al.
        Designation of obesity as a disease: lessons learned from alcohol and tobacco.
        Curr Gastroenterol Rep. 2014; 16: 415
        • Ebbert J.O.
        • Elrashidi M.Y.
        • Jensen M.D.
        Managing overweight and obesity in adults to reduce cardiovascular disease risk.
        Curr Atheroscler Rep. 2014; 16: 445
        • Tuomilehto J.
        • Lindström J.
        • Eriksson J.G.
        • et al.
        Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.
        N Engl J Med. 2001; 344: 1343-1350
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • et al.
        Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N Engl J Med. 2002; 346: 393-403
        • Lee W.J.
        • Hur K.Y.
        • Lakadawala M.
        • et al.
        Gastrointestinal metabolic surgery for the treatment of diabetic patients: a multi-institutional international study.
        J Gastrointest Surg. 2012; 16 ([discussion: 51–2]): 45-51
        • Houmard J.A.
        • Tanner C.J.
        • Slentz C.A.
        • et al.
        Effect of the volume and intensity of exercise training on insulin sensitivity.
        J Appl Physiol. 2004; 96 ([Internet]): 101-106
        • Malin S.K.
        • Niemi N.
        • Solomon T.P.J.
        • et al.
        Exercise training with weight loss and either a high- or low-glycemic index diet reduces metabolic syndrome severity in older adults.
        Ann Nutr Metab. 2012; 61: 135-141
        • Malin S.K.
        • Solomon T.P.J.
        • Blaszczak A.
        • et al.
        Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes.
        Am J Physiol Endocrinol Metab. 2013; 305: E1248-E1254
        • Rock C.L.
        • Flatt S.W.
        • Pakiz B.
        • et al.
        Weight loss, glycemic control, and cardiovascular disease risk factors in response to differential diet composition in a weight loss program in type 2 diabetes: a randomized controlled trial.
        Diabetes Care. 2014; 37: 1573-1580
        • Tay J.
        • Luscombe-Marsh N.D.
        • Thompson C.H.
        • et al.
        A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial.
        Diabetes Care. 2014; 37: 2909-2918
        • Solomon T.P.J.
        • Malin S.K.
        • Karstoft K.
        • et al.
        Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity.
        J Clin Endocrinol Metab. 2013; 98: 4176-4186
        • Umpierre D.
        • Ribeiro P.A.
        • Kramer C.K.
        • et al.
        Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis.
        JAMA. 2011; 305: 1790-1799
        • Malin S.K.
        • Haus J.M.
        • Solomon T.P.J.
        • et al.
        Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes.
        Am J Physiol Endocrinol Metab. 2013; 305: E1292-E1298
        • Solomon T.P.J.
        • Malin S.K.
        • Karstoft K.
        • et al.
        The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus.
        JAMA Intern Med. 2013; 173: 1834-1836
        • Kitabchi A.E.
        • Temprosa M.
        • Knowler W.C.
        • et al.
        Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin.
        Diabetes. 2005; 54: 2404-2414
        • Li G.
        • Zhang P.
        • Wang J.
        • et al.
        The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study.
        Lancet. 2008; 371: 1783-1789
        • Wing R.R.
        • Goldstein M.G.
        • Acton K.J.
        • et al.
        Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity.
        Diabetes Care. 2001; 24: 117-123
        • Ali M.K.
        • Bullard K.M.
        • Saaddine J.B.
        • et al.
        Achievement of goals in U.S. diabetes care, 1999-2010.
        N Engl J Med. 2013; 368: 1613-1624
        • Venditti E.M.
        • Bray G.A.
        • Carrion-Petersen M.L.
        • et al.
        First versus repeat treatment with a lifestyle intervention program: attendance and weight loss outcomes.
        Int J Obes (Lond). 2008; 32: 1537-1544
        • Wing R.R.
        • Bolin P.
        • Brancati F.L.
        • et al.
        • Look AHEAD Research Group
        Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes.
        N Engl J Med. 2013; 369: 145-154
        • Malin S.K.
        • Braun B.
        Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk.
        Exerc Sport Sci Rev. 2016; 44: 4-11
        • Rhee M.
        • Herrick K.
        • Ziemer D.
        • et al.
        Many Americans have pre-diabetes and should be considered for metformin therapy.
        Diabetes Care. 2010; 33: 49-54
        • Malin S.K.
        • Kashyap S.R.
        Effects of metformin on weight loss: potential mechanisms.
        Curr Opin Endocrinol Diabetes Obes. 2014; 21: 323-329
        • Diabetes Prevention Program Research Group
        Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study.
        Lancet Diabetes Endocrinol. 2015; 3: 866-875
        • Punthakee Z.
        • Almeras N.
        • Despres J.P.
        • et al.
        Impact of rosiglitazone on body composition, hepatic fat, fatty acids, adipokines and glucose in persons with impaired fasting glucose or impaired glucose tolerance: a sub-study of the DREAM trial.
        Diabet Med. 2014; 31: 1086-1092
        • DeFronzo R.A.
        • Tripathy D.
        • Schwenke D.C.
        • et al.
        Pioglitazone for diabetes prevention in impaired glucose tolerance.
        N Engl J Med. 2011; 364: 1104-1115
        • Kahn S.E.
        • Cooper M.E.
        • Del Prato S.
        Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.
        Lancet. 2014; 383: 1068-1083
        • Matthews D.R.
        • Cull C.A.
        • Stratton I.M.
        • et al.
        UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group.
        Diabet Med. 1998; 15: 297-303
        • Bennett W.L.
        • Maruthur N.M.
        • Singh S.
        • et al.
        Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations.
        Ann Intern Med. 2011; 154: 602-613
        • Holst J.
        • Vilsbll T.
        • Deacon C.
        The incretin system and its role in type 2 diabetes mellitus.
        Mol Cell Endocrinol. 2009; 297: 127-136
        • Gil-Lozano M.
        • Mingomataj E.L.
        • Wu W.K.
        • et al.
        Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell.
        Diabetes. 2014; 63: 3674-3685
        • Davies M.J.
        • Bergenstal R.
        • Bode B.
        • et al.
        Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial.
        JAMA. 2015; 314: 687-699
        • Pi Sunyer X.
        • Blackburn G.
        • Brancati F.
        • et al.
        Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial.
        Diabetes Care. 2007; 30: 1374-1383
        • Wadden T.A.
        • Hollander P.
        • Klein S.
        • et al.
        Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study.
        Int J Obes (Lond). 2013; 37: 1443-1451
        • Liu S.C.
        • Tu Y.K.
        • Chien M.N.
        • et al.
        Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: a network meta-analysis.
        Diabetes Obes Metab. 2012; 14: 810-820
        • Ryder R.E.
        The potential risks of pancreatitis and pancreatic cancer with GLP-1-based therapies are far outweighed by the proven and potential (cardiovascular) benefits.
        Diabet Med. 2013; 30: 1148-1155
        • Shah P.
        • Ardestani A.
        • Dharmadhikari G.
        • et al.
        The DPP-4 inhibitor linagliptin restores beta-cell function and survival in human isolated islets through GLP-1 stabilization.
        J Clin Endocrinol Metab. 2013; 98: E1163-E1172
        • Shah Z.
        • Kampfrath T.
        • Deiuliis J.
        • et al.
        Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis.
        Circulation. 2011; 124: 2338-2349
        • Malin S.K.
        • Huang H.
        • Mulya A.
        • et al.
        Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome.
        Peptides. 2013; 47: 142-147
        • Yanovski S.Z.
        • Yanovski J.A.
        Long-term drug treatment for obesity: a systematic and clinical review.
        JAMA. 2014; 311: 74-86
        • Fenske W.K.
        • Pournaras D.J.
        • Aasheim E.T.
        • et al.
        Can a protocol for glycaemic control improve type 2 diabetes outcomes after gastric bypass?.
        Obes Surg. 2012; 22: 90-96
        • Monami M.
        • Nardini C.
        • Mannucci E.
        Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials.
        Diabetes Obes Metab. 2014; 16: 457-466
        • Bailey C.J.
        • Gross J.L.
        • Pieters A.
        • et al.
        Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial.
        Lancet. 2010; 375: 2223-2233
        • Vasilakou D.
        • Karagiannis T.
        • Athanasiadou E.
        • et al.
        Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis.
        Ann Intern Med. 2013; 159: 262-274
        • Verrotti A.
        • Scaparrotta A.
        • Agostinelli S.
        • et al.
        Topiramate-induced weight loss: a review.
        Epilepsy Res. 2011; 95: 189-199
        • Garvey W.T.
        • Ryan D.H.
        • Look M.
        • et al.
        Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study.
        Am J Clin Nutr. 2012; 95: 297-308
        • Garvey W.T.
        • Ryan D.H.
        • Henry R.
        • et al.
        Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release.
        Diabetes Care. 2014; 37: 912-921
        • Torgerson J.S.
        • Hauptman J.
        • Boldrin M.N.
        • et al.
        XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients.
        Diabetes Care. 2004; 27: 155-161
        • Derosa G.
        • Cicero A.F.
        • D'Angelo A.
        • et al.
        Effects of 1-year orlistat treatment compared to placebo on insulin resistance parameters in patients with type 2 diabetes.
        J Clin Pharm Ther. 2012; 37: 187-195
        • Scheen A.J.
        • Van Gaal L.F.
        Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes.
        Lancet Diabetes Endocrinol. 2014; 2: 911-922
        • Martin C.K.
        • Redman L.M.
        • Zhang J.
        • et al.
        Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure.
        J Clin Endocrinol Metab. 2011; 96: 837-845
        • Hoy S.M.
        Lorcaserin: a review of its use in chronic weight management.
        Drugs. 2013; 73: 463-473
        • O'Neil P.M.
        • Smith S.R.
        • Weissman N.J.
        • et al.
        Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study.
        Obesity (Silver Spring). 2012; 20: 1426-1436
        • Smith S.R.
        • Fujioka K.
        • Gupta A.K.
        • et al.
        Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity.
        Diabetes Obes Metab. 2013; 15: 863-866
        • Hollander P.
        • Gupta A.K.
        • Plodkowski R.
        • et al.
        Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes.
        Diabetes Care. 2013; 36: 4022-4029
        • Brethauer S.A.
        • Aminian A.
        • Romero-Talamás H.
        • et al.
        Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus.
        Ann Surg. 2013; 258: 628-636
        • Courcoulas A.P.
        • Belle S.H.
        • Neiberg R.H.
        • et al.
        Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial.
        JAMA Surg. 2015; 150: 931-940
        • Kashayp S.R.
        • Bhatt D.
        • Wolski K.
        • et al.
        Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery vs intensive medical treatment.
        Diabetes Care. 2013; 36: 2175-2182
        • Malin S.K.
        • Samat A.
        • Wolski K.
        • et al.
        Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy.
        Int J Obes. 2014; 38: 364-370
        • Ribaric G.
        • Buchwald J.N.
        • McGlennon T.W.
        Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis.
        Obes Surg. 2014; 24: 437-455
      1. Standards of medical care in diabetes-2015: summary of revisions.
        Diabetes Care. 2015; 38: S4
        • Dixon J.
        • Zimmet P.
        • Alberti K.G.
        • et al.
        Bariatric surgery: an IDF statement for obese type 2 diabetes.
        Surg Obes Relat Dis. 2011; 7: 433-447
        • Khanna V.
        • Malin S.K.
        • Bena J.
        • et al.
        Adults with long-duration type 2 diabetes have blunted glycemic and ß-cell function improvements after bariatric surgery.
        Obesity (Silver Spring). 2015; 23: 523-526
        • Malin S.K.
        • Bena J.
        • Abood B.
        • et al.
        Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery.
        Diabetes Obes Metab. 2014; 16: 1230-1238
        • Wang G.F.
        • Yan Y.X.
        • Xu N.
        • et al.
        Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: a meta-analysis.
        Obes Surg. 2015; 25: 199-208
        • Sjostrom L.
        • Peltonen M.
        • Jacobson P.
        • et al.
        Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications.
        JAMA. 2014; 311: 2297-2304
        • Coen P.
        • Tanner C.
        • Helbling N.
        • et al.
        Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity.
        J Clin Invest. 2015; 125: 248-257