Advertisement

Physiology of Parathyroid Hormone

  • David Goltzman
    Correspondence
    Research Institute of the McGill University Health Centre—Glen Site, 1001 Decarie Boulevard, Room EM1.3220, Montreal, Quebec H4A 3J1, Canada.
    Affiliations
    Department of Medicine and Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada

    Departments of Medicine and of Physiology, McGill University, 845 Sherbrooke St West, Montreal, Quebec H3A 0B9, Canada
    Search for articles by this author
Published:October 11, 2018DOI:https://doi.org/10.1016/j.ecl.2018.07.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Endocrinology and Metabolism Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Naylor S.L.
        • Sakaguchi A.Y.
        • Szoka P.
        • et al.
        Human parathyroid hormone gene (PTH) is on short arm of chromosome 11.
        Somatic Cell Genet. 1983; 9: 609-616
        • Brown E.M.
        Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue.
        J Clin Endocrinol Metab. 1983; 56: 572-581
        • Mayer G.P.
        • Keaton J.A.
        • Hurst J.G.
        • et al.
        Effects of plasma calcium concentration on the relative proportion of hormone and carboxyl fragments in parathyroid venous blood.
        Endocrinology. 1979; 104: 1778
        • Hanley D.A.
        • Ayer L.M.
        Calcium-dependent release of carboxyl-terminal fragments of parathyroid hormone by hyperplastic human parathyroid tissue in vitro.
        J Clin Endocrinol Metab. 1986; 63: 1075
        • D'Amour P.
        • Palardy J.
        • Bahsali G.
        • et al.
        The modulation of circulating parathyroid hormone immunoheterogeneity in man by ionized calcium concentration.
        J Clin Endocrinol Metab. 1992; 74: 525-532
        • Segre B.V.
        • D'Amour P.
        • Potts J.T.
        Metabolism of radioiodinated bovine parathyroid hormone in the rat.
        Endocrinology. 1976; 99: 1645-1652
        • Zhang C.X.
        • Weber B.V.
        • Thammavong J.
        • et al.
        Identification of carboxyl-terminal peptide fragments of parathyroid hormone in human plasma at low-picomolar levels by mass spectrometry.
        Anal Chem. 2006; 78: 1636-1643
        • Segre G.V.
        • D'Amour P.
        • Hultman A.
        • et al.
        Effects of hepatectomy, nephrectomy, and nephrectomy/uremia on the metabolism of parathyroid hormone in the rat.
        J Clin Invest. 1981; 67: 439-448
        • Yamamoto M.
        • Igarishi T.
        • Muramatsu M.
        • et al.
        Hypocalcemia increases and hypercalcemia decreases the steady state level of parathyroid hormone messenger RNA in the rat.
        J Clin Invest. 1989; 83: 1053-1056
        • Naveh-Many T.
        • Silver J.
        Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat.
        J Clin Invest. 1990; 86: 1313-1319
        • Kilav R.
        • Silver J.
        • Naveh-Many T.
        A conserved cis-acting element in the parathyroid hormone 3′-untranslated region is sufficient for regulation of RNA stability by calcium and phosphate.
        J Biol Chem. 2001; 276: 8727-8733
        • Kremer R.
        • Bolivar I.
        • Goltzman D.
        • et al.
        Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells.
        Endocrinology. 1989; 125: 935-941
        • Russell J.
        • Lettieri D.
        • Sherwood L.M.
        Suppression by 1,25(OH)2D3 of transcription of the pre-proparathyroid hormone gene.
        Endocrinology. 1986; 119: 2864-2866
        • Salehi-Tabar R.
        • Nguyen-Yamamoto L.
        • Tavera-Mendoza L.E.
        • et al.
        Vitamin D receptor as a master regulator of the c-MYC/MXD1 network.
        Proc Natl Acad Sci U S A. 2012; 109: 18827-18832
        • Wallace J.
        • Scarpa A.
        Similarities of Li+ and low Ca2+ in the modulation of secretion by parathyroid cells in vitro.
        J Biol Chem. 1983; 258: 6288-6292
        • Dusso A.
        • Cozzolino M.
        • Lu Y.
        • et al.
        1,25-Dihydroxyvitamin D downregulation of TGF alpha/EGFR expression and growth signaling: a mechanism for the antiproliferative actions of the sterol in parathyroid hyperplasia of renal failure.
        J Steroid Biochem Mol Biol. 2004; 89-90: 507-511
        • Xu M.
        • Choudhary S.
        • Goltzman D.
        • et al.
        Do cycloxygenase-2 knockout mice have primary hyperparathyroidism?.
        Endocrinology. 2005; 146: 1843-1853
        • Nakajima K.
        • Umino K.
        • Azuma Y.
        • et al.
        Stimulating parathyroid cell proliferation and PTH release with phosphate in organ cultures obtained from patients with primary and secondary hyperparathyroidism for a prolonged period.
        J Bone Miner Metab. 2009; 27: 224-335
        • Silver J.
        • Naveh-Many T.
        FGF23 and the parathyroid.
        Adv Exp Med Biol. 2012; 728: 92-99
        • Tregear G.W.
        • Van Rietschoten J.
        • Greene E.
        • et al.
        Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity.
        Endocrinology. 1973; 93: 1349-1353
        • Goltzman D.
        • Peytremann A.
        • Callahan E.
        • et al.
        Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues.
        J Biol Chem. 1975; 250: 3199-3203
        • Jüppner H.
        • Abou-Samra A.B.
        • Freeman M.
        • et al.
        A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide.
        Science. 1991; 254: 1024-1026
        • Abou-Samra A.B.
        • Jüppner H.
        • Force T.
        • et al.
        Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium.
        Proc Natl Acad Sci U S A. 1992; 89: 2732-2736
        • Vilardaga J.P.
        • Romero G.
        • Friedman P.A.
        • et al.
        Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm.
        Cell Mol Life Sci. 2011; 68: 1-13
        • Datta N.S.
        • Abou-Samra A.B.
        PTH and PTHrP signaling in osteoblasts.
        Cell Signal. 2009; 21: 1245-1254
        • Singh A.T.
        • Gilchrist A.
        • Voyno-Yasenetskaya T.
        • et al.
        G alpha12/G alpha13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells.
        Endocrinology. 2005; 146: 2171-2175
        • Radeff J.M.
        • Nagy Z.
        • Stern P.H.
        Rho and Rho kinase are involved in parathyroid hormone-stimulated protein kinase C alpha translocation and IL-6 promoter activity in osteoblastic cells.
        J Bone Miner Res. 2004; 19: 1882-1891
        • Ferrari S.L.
        • Behar V.
        • Chorev M.
        • et al.
        Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves beta- arrestin 2. Real-time monitoring by fluorescence microscopy.
        J Biol Chem. 1999; 274: 29968-29975
        • Bohinc B.N.
        • Gesty-Palmer D.
        β-arrestin-biased agonism at the parathyroid hormone receptor uncouples bone formation from bone resorption.
        Endocr Metab Immune Disord Drug Targets. 2011; 11: 112-119
        • Sneddon W.B.
        • Syme C.A.
        • Bisello A.
        • et al.
        Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50).
        J Biol Chem. 2003; 278: 43787-43796
        • Wang B.
        • Ardura J.A.
        • Romero G.
        • et al.
        Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of Gα protein subunits.
        J Biol Chem. 2010; 285: 26976-26986
        • Mahon M.J.
        • Donowitz M.
        • Yun C.C.
        • et al.
        Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling.
        Nature. 2002; 417: 858-886
        • Maeda S.
        • Wu S.
        • Jüppner H.
        • et al.
        Cell-specific signal transduction of parathyroid hormone (PTH)-related protein through stably expressed recombinant PTH/PTHrP receptors in vascular smooth muscle cells.
        Endocrinology. 1996; 137: 3154-3162
        • Murer H.
        • Hernando N.
        • Forster I.
        • et al.
        Regulation of Na/Pi transporter in the proximal tubule.
        Annu Rev Physiol. 2003; 65: 531-542
        • Brenza H.L.
        • Kimmel-Jehan C.
        • Jehan F.
        • et al.
        Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter.
        Proc Natl Acad Sci U S A. 1998; 95: 1387-1391
        • Custer M.
        • Lotscher M.
        • Biber J.
        • et al.
        Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry.
        Am J Physiol. 1994; 266: F767-F774
        • Amizuka N.
        • Lee H.S.
        • Kwan M.Y.
        • et al.
        Cell-specific expression of the parathyroid hormone (PTH)/PTH-related peptide receptor gene in kidney from kidney-specific and ubiquitous promoters.
        Endocrinology. 1997; 138: 469-481
        • Ba J.
        • Brown D.
        • Friedman P.A.
        CaSR regulation of PTH-inhibitable proximal tubule phosphate transport.
        Am J Physiol Renal Physiol. 2003; 285: F1233-F1243
        • Capuano P.
        • Bacic D.
        • Roos M.
        • et al.
        Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice.
        Am J Physiol Cell Physiol. 2007; 292: C927-C934
        • Traebert M.
        • Völkl H.
        • Biber J.
        • et al.
        Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-Pi cotransporter.
        Am J Physiol Ren Physiol. 2000; 278: F792-F798
        • Bacic D.
        • Lehir M.
        • Biber J.
        • et al.
        The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone.
        Kidney Int. 2006; 69: 495-503
        • Segawa H.
        • Yamanaka S.
        • Onitsuka A.
        • et al.
        Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter.
        Am J Physiol Ren Physiol. 2007; 292: F395-F403
        • Kaminsky N.I.
        • Broadus A.E.
        • Hardman J.G.
        • et al.
        Effects of parathyroid hormone on plasma and urinary adenosine 3′,5′-monophosphate in man.
        J Clin Invest. 1970; 49: 2387-2395
        • Ullrich K.J.
        • Rumrich G.
        • Kloss S.
        Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport.
        Pflugers Arch. 1976; 364: 223-228
        • Hebert S.C.
        Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney.
        Kidney Int. 1996; 50: 2129-2139
        • Toka H.R.
        • Al-Romaih K.
        • Koshy J.M.
        • et al.
        Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria.
        J Am Soc Nephrol. 2012; 23: 1879-1890
        • Loupy A.
        • Ramakrishnan S.K.
        • Wootla B.
        • et al.
        PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor.
        J Clin Invest. 2012; 122: 3355-3367
        • van Abel M.
        • Hoenderop J.G.
        • van der Kemp A.W.
        • et al.
        Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone.
        Kidney Int. 2005; 68: 1708-1721
        • Cha S.K.
        • Wu T.
        • Huang C.L.
        Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5.
        Am J Physiol Ren Physiol. 2008; 294: F1212-F1221
        • Topala C.N.
        • Schoeber J.P.
        • Searchfield L.E.
        • et al.
        Activation of the Ca(2+)-sensing receptor stimulates the activity of the epithelial Ca(2+) channel TRPV5.
        Cell Calcium. 2009; 45: 331-339
        • Wagner C.A.
        • Devuyst O.
        • Bourgeois S.
        • et al.
        Regulated acid-base transport in the collecting duct.
        Pflugers Arch. 2009; 458: 137-156
        • Rouleau M.F.
        • Mitchell J.
        • Goltzman D.
        Characterization of the major parathyroid hormone target cell in the endosteal metaphysis of rat long bones.
        J Bone Miner Res. 1990; 5: 1043-1053
        • Boyle W.J.
        • Simonet W.S.
        • Lacey D.L.
        Osteoclast differentiation and activation.
        Nature. 2003; 423: 337-342
        • Li X.
        • Liu H.
        • Qin L.
        • et al.
        Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis.
        J Biol Chem. 2007; 282: 33086-33097
        • Yang D.
        • Singh R.
        • Divieti P.
        • et al.
        Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone.
        Bone. 2007; 40: 1453-1461
        • Guo J.
        • Liu M.
        • Yang D.
        • et al.
        Phospholipase C signaling via the parathyroid hormone (PTH)/PTH-related peptide receptor is essential for normal bone responses to PTH.
        Endocrinology. 2010; 151: 3502-3513
        • Miao D.
        • He B.
        • Karaplis A.C.
        • et al.
        Parathyroid hormone is essential for normal fetal bone formation.
        J Clin Invest. 2002; 109: 1173-1182
        • Ren Y.
        • Liu B.
        • Feng Y.
        • et al.
        Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1–34).
        PLoS One. 2011; 6: e23060
        • Miao D.
        • Li J.
        • Xue Y.
        • et al.
        Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice.
        Endocrinology. 2004; 145: 3554-3562
        • Zhu Q.
        • Zhou X.
        • Zhu M.
        • et al.
        Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.
        J Bone Miner Res. 2013; 28: 1898-1911
        • Miao D.
        • Su H.
        • He B.
        • et al.
        Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein.
        Proc Natl Acad Sci U S A. 2008; 105: 20309-20314
        • Toribio R.E.
        • Brown H.A.
        • Novince C.M.
        • et al.
        The midregion, nuclear localization sequence and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice.
        FASEB J. 2010; 24: 1947-1957
        • McCauley L.K.
        • Koh A.J.
        • Beecher C.A.
        • et al.
        Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate-dependent manner in osteoblastic cells.
        Endocrinology. 1997; 138: 5427-5433
        • Swarthout J.T.
        • Doggett T.A.
        • Lemker J.L.
        • et al.
        Stimulation of extracellular signal-regulated kinases and proliferation n rat osteoblastic cells by parathyroid hormone is protein kinaseC-dependent.
        J Biol Chem. 2001; 276: 7586-7592
        • Miao D.
        • Tong X.
        • Chan G.
        • et al.
        Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway.
        J Biol Chem. 2001; 276: 32204-32212
        • Krishnan V.
        • Moore T.L.
        • Ma Y.L.
        • et al.
        Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling.
        Mol Endocrinol. 2003; 17: 423-435
        • Hisa I.
        • Inoue Y.
        • Hendy G.N.
        • et al.
        Parathyroid hormone-responsive Smad3-related factorTmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway.
        J Biol Chem. 2011; 286: 9787-9796
        • Qin L.
        • Li X.
        • Ko J.K.
        • et al.
        Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase.
        J Biol Chem. 2005; 280: 3104-3111
        • Onishi T.
        • Hruska K.
        Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone.
        Endocrinology. 1997; 138: 1995-2004
        • Datta N.S.
        • Kolailat R.
        • Fite A.
        • et al.
        Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation.
        Cell Signal. 2010; 22: 457-466
        • Jilka R.L.
        • Weinstein R.S.
        • Bellido T.
        • et al.
        Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone.
        J Clin Invest. 1999; 104: 439-446
        • Schnoke M.
        • Midura S.B.
        • Midura R.J.
        Parathyroid hormone suppresses osteoblast apoptosis by augmenting DNA repair.
        Bone. 2009; 45: 590-602
        • van Bezooijen R.L.
        • Roelen B.A.
        • Visser A.
        • et al.
        Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist.
        J Exp Med. 2004; 199: 805-814
        • Keller H.
        • Kneissel M.
        SOST is a target gene for PTH in bone.
        Bone. 2005; 37: 148-158
        • Leupin O.
        • Kramer I.
        • Collette N.M.
        • et al.
        Control of the SOST bone enhancer by PTH using MEF2 transcription factors.
        J Bone Miner Res. 2007; 22: 1957-1967
        • Sims N.A.
        Building bone with a SOST–PTH partnership.
        J Bone Miner Res. 2010; 25: 175-177
        • Kramer I.
        • Keller H.
        • Leupin O.
        • et al.
        Does osteocytic SOST suppression mediate PTH bone anabolism?.
        Trends Endocrinol Metab. 2010; 21: 237-244
        • McCarthy T.L.
        • Centrella M.
        • Canalis E.
        Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone.
        Endocrinology. 1989; 124: 1247-1253
        • Hurley M.M.
        • Okada Y.
        • Xiao L.
        • et al.
        Impaired bone anabolic response to parathyroid hormone in Fgf2−/− and Fgf2+/− mice.
        Biochem Biophys Res Commun. 2006; 341: 989-994
        • Dobnig H.
        • Sipos A.
        • Jiang Y.
        • et al.
        Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy.
        J Clin Endocrinol Metab. 2005; 90: 3970-3977
        • Lane N.E.
        • Sanchez S.
        • Genant H.K.
        • et al.
        Short-term increases in bone turnover markers predict parathyroid hormone-induced spinal bone mineral density gains in post-menopausal women with glucocorticoid-induced osteoporosis.
        Osteoporos Int. 2000; 11: 434-442
        • Kurland E.S.
        • Cosman F.
        • McMahon D.J.
        • et al.
        Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers.
        J Clin Endocrinol Metab. 2000; 85: 3069-3076
        • Rubin M.R.
        • Bilezikian J.P.
        Parathyroid hormone as an anabolic skeletal therapy.
        Drugs. 2005; 65: 2481-2498
        • Girotra M.
        • Rubin M.R.
        • Bilezikian J.P.
        The use of parathyroid hormone in the treatment of osteoporosis.
        Rev Endocr Metab Disord. 2006; 7: 113-121
        • Lindsay R.
        • Cosman F.
        • Zhou H.
        • et al.
        A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide.
        J Bone Miner Res. 2006; 21: 366-373
        • Compston J.E.
        Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure.
        Bone. 2007; 40: 1447-1452
        • Lindsay R.
        • Zhou H.
        • Cosman F.
        • et al.
        Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium.
        J Bone Miner Res. 2007; 22: 495-502
        • Zanchetta J.R.
        • Bogado C.E.
        • Cisari C.
        • et al.
        Treatment of postmenopausal women with osteoporosis with PTH(1–84) for 36 months: treatment extension study.
        Curr Med Res Opin. 2010; 26: 2627-2633
        • Boyce B.F.
        Advances in the regulation of osteoclasts and osteoclast functions.
        J Dent Res. 2013; 92: 860
        • Lee S.-K.
        • Lorenzo J.
        Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation.
        Endocrinology. 1999; 140: 3552-3561
        • Locklin R.M.
        • Khosla S.
        • Turner R.T.
        • et al.
        Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone.
        J Cell Biochem. 2003; 89: 180-190
        • Mundy G.R.
        The effects of TGF-beta on bone.
        Ciba Found Symp. 1991; 157: 137-143
        • Tang Y.
        • Wu X.
        • Lei W.
        • et al.
        TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation.
        Nat Med. 2009; 15: 757-765
        • Zhao C.
        • Irie N.
        • Takada Y.
        • et al.
        Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis.
        Cell Metab. 2006; 4: 111-121
        • Ryu J.
        • Kim H.J.
        • Chang E.J.
        • et al.
        Sphingo-sine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling.
        EMBO J. 2006; 25: 5840-5851
        • Pederson L.
        • Ruan M.
        • Westendorf J.J.
        • et al.
        Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate.
        Proc Natl Acad Sci USA. 2008; 105: 20764-20769