Advertisement
Review Article|Articles in Press

Metabolic-Associated Fatty Liver Disease and Sarcopenia

Published:March 15, 2023DOI:https://doi.org/10.1016/j.ecl.2023.02.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Endocrinology and Metabolism Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zambon Azevedo V.
        • Silaghi C.A.
        • Maurel T.
        • et al.
        Impact of sarcopenia on the severity of the liver damage in patients with non-alcoholic fatty liver disease.
        Front Nutr. 2021; 8: 774030
        • Kuchay M.S.
        • Martinez-Montoro J.I.
        • Kaur P.
        • et al.
        Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: an altered liver-muscle crosstalk leading to increased mortality risk.
        Ageing Res Rev. 2022; 80: 101696
        • Fernandez-Mincone T.
        • Contreras-Briceno F.
        • Espinosa-Ramirez M.
        • et al.
        Nonalcoholic fatty liver disease and sarcopenia: pathophysiological connections and therapeutic implications.
        Expet Rev Gastroenterol Hepatol. 2020; 14: 1141-1157
        • Korenblat K.M.
        • Fabbrini E.
        • Mohammed B.S.
        • et al.
        Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects.
        Gastroenterology. 2008; 134: 1369-1375
        • Le M.H.
        • Yeo Y.H.
        • Li X.
        • et al.
        2019 Global NAFLD prevalence: a systematic review and meta-analysis.
        Clin Gastroenterol Hepatol. 2022; 20: 2809-2817 e28
        • Morley J.E.
        • Anker S.D.
        • von Haehling S.
        Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014.
        J Cachexia Sarcopenia Muscle. 2014; 5: 253-259
        • El Sherif O.
        • Dhaliwal A.
        • Newsome P.N.
        • et al.
        Sarcopenia in nonalcoholic fatty liver disease: new challenges for clinical practice.
        Expet Rev Gastroenterol Hepatol. 2020; 14: 197-205
        • Santos C.M.L.
        • Brito M.D.
        • de Castro P.
        • et al.
        Metabolic-associated fatty liver disease is associated with low muscle mass and strength in patients with chronic hepatitis B.
        World J Hepatol. 2022; 14: 1652-1666
        • Petta S.
        • Ciminnisi S.
        • Di Marco V.
        • et al.
        Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease.
        Aliment Pharmacol Ther. 2017; 45: 510-518
        • Koo B.K.
        • Kim D.
        • Joo S.K.
        • et al.
        Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis.
        J Hepatol. 2017; 66: 123-131
        • Kim G.
        • Lee S.E.
        • Lee Y.B.
        • et al.
        Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: a 7-year longitudinal study.
        Hepatology. 2018; 68: 1755-1768
        • Lee Y.H.
        • Jung K.S.
        • Kim S.U.
        • et al.
        Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: nationwide surveys (KNHANES 2008-2011).
        J Hepatol. 2015; 63: 486-493
        • Sun X.
        • Liu Z.
        • Chen F.
        • et al.
        Sarcopenia modifies the associations of nonalcoholic fatty liver disease with all-cause and cardiovascular mortality among older adults.
        Sci Rep. 2021; 11: 15647
        • Kouvari M.
        • Polyzos S.A.
        • Chrysohoou C.
        • et al.
        Skeletal muscle mass and abdominal obesity are independent predictors of hepatic steatosis and interact to predict ten-year cardiovascular disease incidence: data from the ATTICA cohort study.
        Clin Nutr. 2022; 41: 1281-1289
        • Papatheodoridi A.M.
        • Chrysavgis L.
        • Koutsilieris M.
        • et al.
        the role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis.
        Hepatology. 2020; 71: 363-374
        • Bertolotti M.
        • Lonardo A.
        • Mussi C.
        • et al.
        Nonalcoholic fatty liver disease and aging: epidemiology to management.
        World J Gastroenterol. 21 2014; 20: 14185-14204
        • Saad F.
        • Röhrig G.
        • von Haehling S.
        • et al.
        Testosterone deficiency and testosterone treatment in older men.
        Gerontology. 2017; 63: 144-156
        • Lonardo A.
        • Nascimbeni F.
        • Ballestri S.
        • et al.
        Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps.
        Hepatology. 2019; 70: 1457-1469
        • Ford E.S.
        • Ajani U.A.
        • McGuire L.C.
        • et al.
        Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults.
        Diabetes Care. 2005; 28: 1228-1230
        • Velazquez K.T.
        • Enos R.T.
        • Bader J.E.
        • et al.
        Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice.
        World J Hepatol. 2019; 11: 619-637
        • van den Hoek A.M.
        • de Jong J.
        • Worms N.
        • et al.
        Diet and exercise reduce pre-existing NASH and fibrosis and have additional beneficial effects on the vasculature, adipose tissue and skeletal muscle via organ-crosstalk.
        Metabolism. 2021; 124: 154873
        • Mikolasevic I.
        • Pavic T.
        • Kanizaj T.F.
        • et al.
        Nonalcoholic fatty liver disease and sarcopenia: where do we stand?.
        Chin J Gastroenterol Hepatol. 2020; 2020: 8859719
        • Longo M.
        • Zatterale F.
        • Naderi J.
        • et al.
        Adipose tissue dysfunction as determinant of obesity-associated metabolic complications.
        Int J Mol Sci. 2019; 20: 2358
        • Kumar A.
        • Welch N.
        • Mishra S.
        • et al.
        Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence.
        JCI Insight. 2021; 6: e154089
        • Kurose S.
        • Onishi K.
        • Takao N.
        • et al.
        Association of serum adiponectin and myostatin levels with skeletal muscle in patients with obesity: a cross-sectional study.
        PLoS One. 2021; 16: e0245678
        • Polyzos S.A.
        • Kountouras J.
        • Anastasilakis A.D.
        • et al.
        Irisin in patients with nonalcoholic fatty liver disease.
        Metabolism. 2014; 63: 207-217
        • Powrozek T.
        • Pigon-Zajac D.
        • Mazurek M.
        • et al.
        TNF-alpha induced myotube atrophy in C2C12 cell line uncovers putative inflammatory-related lncRNAs mediating muscle wasting.
        Int J Mol Sci. 2022; 23
        • Cai D.
        • Frantz J.D.
        • Tawa Jr., N.E.
        • et al.
        IKKbeta/NF-kappaB activation causes severe muscle wasting in mice.
        Cell. 2004; 119: 285-298
        • Wong V.W.
        • Tse C.H.
        • Lam T.T.
        • et al.
        Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study.
        PLoS One. 2013; 8: e62885
        • Liu C.
        • Cheung W.H.
        • Li J.
        • et al.
        Understanding the gut microbiota and sarcopenia: a systematic review.
        J Cachexia Sarcopenia Muscle. 2021; 12: 1393-1407
        • Hong S.H.
        • Choi K.M.
        Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences.
        Int J Mol Sci. 2020; 21: 494
        • Stitt T.N.
        • Drujan D.
        • Clarke B.A.
        • et al.
        The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.
        Mol Cell. 2004; 14: 395-403
        • Kim J.A.
        • Choi K.M.
        Sarcopenia and fatty liver disease.
        Hepatol Int. 2019; 13: 674-687
        • Cleasby M.E.
        • Jamieson P.M.
        • Atherton P.J.
        Insulin resistance and sarcopenia: mechanistic links between common co-morbidities.
        J Endocrinol. 2016; 229: R67-R81
        • Ji T.
        • Li Y.
        • Ma L.
        Sarcopenic obesity: an emerging public health problem.
        Aging Dis. 2022; 13: 379-388
        • Gao Q.
        • Mei F.
        • Shang Y.
        • et al.
        Global prevalence of sarcopenic obesity in older adults: a systematic review and meta-analysis.
        Clin Nutr. 2021; 40: 4633-4641
        • Song W.
        • Yoo S.H.
        • Jang J.
        • et al.
        Association between sarcopenic obesity status and nonalcoholic fatty liver disease and fibrosis.
        Gut Liver. 2023; 17: 130-138
        • Chun H.S.
        • Lee M.
        • Lee H.A.
        • et al.
        Risk stratification for sarcopenic obesity in subjects with nonalcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2022; (S1542-3565(22)01111-9)
        • Lim S.
        • Kim J.H.
        • Yoon J.W.
        • et al.
        Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA).
        Diabetes Care. 2010; 33: 1652-1654
        • Kim T.N.
        • Park M.S.
        • Kim Y.J.
        • et al.
        Association of low muscle mass and combined low muscle mass and visceral obesity with low cardiorespiratory fitness.
        PLoS One. 2014; 9: e100118
        • Fielding R.A.
        • Vellas B.
        • Evans W.J.
        • et al.
        Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia.
        J Am Med Dir Assoc. 2011; 12: 249-256
        • Welch A.A.
        • Hayhoe R.P.G.
        • Cameron D.
        The relationships between sarcopenic skeletal muscle loss during ageing and macronutrient metabolism, obesity and onset of diabetes.
        Proc Nutr Soc. 2020; 79: 158-169
        • Polyzos S.A.
        • Margioris A.N.
        Sarcopenic obesity.
        Hormones (Basel). 2018; 17: 321-331
        • Cruz-Jentoft A.J.
        • Bahat G.
        • Bauer J.
        • et al.
        Sarcopenia: revised European consensus on definition and diagnosis.
        Age Ageing. 2019; 48: 16-31
        • Malmstrom T.K.
        • Morley J.E.
        SARC-F: a simple questionnaire to rapidly diagnose sarcopenia.
        J Am Med Dir Assoc. 2013; 14: 531-532
        • Donini L.M.
        • Busetto L.
        • Bischoff S.C.
        • et al.
        Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement.
        Obes Facts. 2022; 15: 321-335
        • Merli M.
        • Dasarathy S.
        Sarcopenia in non-alcoholic fatty liver disease: targeting the real culprit?.
        J Hepatol. 2015; 63: 309-311
        • Aleixo G.F.P.
        • Shachar S.S.
        • Nyrop K.A.
        • et al.
        Bioelectrical impedance analysis for the assessment of sarcopenia in patients with cancer: a systematic review.
        Oncol. 2020; 25: 170-182
        • Chianca V.
        • Albano D.
        • Messina C.
        • et al.
        Sarcopenia: imaging assessment and clinical application.
        Abdom Radiol (NY). 2022; 47: 3205-3216
        • Giusto M.
        • Lattanzi B.
        • Albanese C.
        • et al.
        Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry.
        Eur J Gastroenterol Hepatol. 2015; 27: 328-334
        • Williams F.R.
        • Milliken D.
        • Lai J.C.
        • et al.
        Assessment of the frail patient with end-stage liver disease: a practical overview of sarcopenia, physical function, and disability.
        Hepatol Commun. 2021; 5: 923-937
        • Dhaliwal A.
        • Armstrong M.J.
        Sarcopenia in cirrhosis: a practical overview.
        Clin Med. 2020; 20: 489-492
        • Chrysavgis L.
        • Giannakodimos I.
        • Diamantopoulou P.
        • et al.
        Non-alcoholic fatty liver disease and hepatocellular carcinoma: clinical challenges of an intriguing link.
        World J Gastroenterol. 21 2022; 28: 310-331
        • Zarghamravanbakhsh P.
        • Frenkel M.
        • Poretsky L.
        Metabolic causes and consequences of nonalcoholic fatty liver disease (NAFLD).
        Metabol Open. 2021; 12: 100149
        • Byrne C.D.
        • Targher G.
        NAFLD: a multisystem disease.
        J Hepatol. 2015; 62: S47-S64
        • Targher G.
        • Byrne C.D.
        • Lonardo A.
        • et al.
        Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis.
        J Hepatol. 2016; 65: 589-600
        • AlQudah M.
        • Hale T.M.
        • Czubryt M.P.
        Targeting the renin-angiotensin-aldosterone system in fibrosis.
        Matrix Biol. 2020; 91-92: 92-108
        • Kim D.
        • Wijarnpreecha K.
        • Sandhu K.K.
        • et al.
        Sarcopenia in nonalcoholic fatty liver disease and all-cause and cause-specific mortality in the United States.
        Liver Int. 2021; 41: 1832-1840
        • Bartekova M.
        • Radosinska J.
        • Jelemensky M.
        • et al.
        Role of cytokines and inflammation in heart function during health and disease.
        Heart Fail Rev. 2018; 23: 733-758
        • Moon J.H.
        • Koo B.K.
        • Kim W.
        Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey.
        J Cachexia Sarcopenia Muscle. 2021; 12: 964-972
        • Han E.
        • Kim M.K.
        • Im S.S.
        • et al.
        Non-alcoholic fatty liver disease and sarcopenia is associated with the risk of albuminuria independent of insulin resistance, and obesity.
        J Diabet Complications. 2022; 36: 108253
        • European Association for the Study of the L
        • European Association for the Study of D
        • European Association for the Study of O
        EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease.
        J Hepatol. 2016; 64: 1388-1402
        • Richter E.A.
        • Hargreaves M.
        Exercise, GLUT4, and skeletal muscle glucose uptake.
        Physiol Rev. 2013; 93: 993-1017
        • Fredrickson G.
        • Barrow F.
        • Dietsche K.
        • et al.
        Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH.
        Mol Metab. 2021; 53: 101270
        • Zhang C.
        • Yang M.
        Current options and future directions for NAFLD and NASH treatment.
        Int J Mol Sci. 2021; 22: 7571
        • Vancells Lujan P.
        • Viñas Esmel E.
        • Sacanella Meseguer E.
        Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development.
        Nutrients. 2021; 13: 1442
        • Sinclair M.
        • Grossmann M.
        • Hoermann R.
        • et al.
        Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial.
        J Hepatol. 2016; 65: 906-913
        • Mansour-Ghanaei F.
        • Pourmasoumi M.
        • Hadi A.
        • et al.
        The efficacy of Vitamin D supplementation against nonalcoholic fatty liver disease: a meta-analysis.
        J Diet Suppl. 2020; 17: 467-485
      1. Late breaker posters.
        J Hepatol. 2021; 75: S294-S803
        • Cignarelli A.
        • Genchi V.A.
        • Le Grazie G.
        • et al.
        Mini review: effect of GLP-1 receptor agonists and SGLT-2 Inhibitors on the growth hormone/IGF axis.
        Front Endocrinol. 2022; 13: 846903